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1. INTRODUCTION

The DYNASPHERE computer code for the solution of system-generated elec-
tromagnetic pulse (SGEMP) problems in spherical geometry is described in
this report. Emphasis is given to the practical details necessary for the
effective operation of the code. A brief description of the code is out-
lined, and then specifics such as computer requirements essential to its
operation are discussed. Input card requirements are detailed, a sample
problem is treated, and the code output interpreted. Many prominent code
variables are defined in a glossary. All terms necessary to the effective
application of DYNASPHERE to typical SGEMP calculations are defined. De-
tailed descriptions of physics and modeling, as well as code checkouts, are

found in Reference 1.

1. T. N. Delmer et al., "SGEMP Phenomenology and Computer Code Devel-
opment,' DNA 3653F, November 11, 1974.

-
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2. DYNASPHERE DESCRIPTION

DYNASHPERE treats the SGEMP two-dimensional problem for axisymmetric®
electron emission from concentric perfectly-conducting spheres. Emission
electron energy spectrum, pulse shape, and spatial distributions must be
specified to the code. Maxwell's equations are solved to obtain fields
which act on the electrons. The electron motion is treated by following
particles of charge through the spatial grid. The calculation is self-
consistent in that fields modify electron trajectories which, in turn,
modify the fields.

Electron emission can occur from the inner or outer spheres, although
presently the code will not emit from both spheres simultancously. Energy
spectra and spatial and angular distributions are arbitrary. The emission
current pulse is specified with a trapezoidal shape, with arbitrary rise
and fall times and pulse length. No time-retardation of the emission cur-
rent is modeled. This can be a considerable deficiency for small ratios
of pulse length to light times-of-flight across object dimensions, or in
calculations where surface currents within the emission region are required
(Ref. 2). Worst-case surface currents, generally located just outside the

emission region, occur in situations where moderately long-duration pulses

are coupled with simultaneous emission. Minor code modifications could be
made to retard electron emission for very short-pulse problems.

Particles of charge representing large numbers of electrons are used
to represent photo-electric emission from surfaces. These particles can
be injected with discrete or random energy and angular distributions.
Electron emission at discrete spatial positions are required presently.

The normal configuration used in the calculations consits of concen-

tric cylinders, although an isolated sphere can be treated in the

2. E. P. Wennas, S. Rogers, and A. J. Woods, "Sensitivity of SGEMP
Response to Input Parameters,' IEEE Trans. Nucl. Sci. NS-22, No. 6,
December 1975.

*
The axis-of-emission symmetry is defined by the direction of photon
propagation.
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quasi-static section of the code. DYNASPHERE performs the calculation

for the electric and magnetic fields produced by the electrons using
either the full Maxwell's equations or the quasi-static Green's function
approach, depending on input options specified., The latter approach was
employed in the forerunner code TSPHERE (Ref 1) due to its case of imple-
mentation. The method is valid under conditions of leng pulse rise times
and low-energy electron spectra (Ref 3). It has been retained as a subset
of the DYNASPHERE code, but is not discussed in detail here because of the
former documentation. The full Maxwell's equation treatment permits cal-
culation of late-time current ringing in the structure and provides general-
ly more accurate results.

Spherical coordinates are employed for the spatial zoning in DYNASPHERE.
Excellent resolution of the region surrounding spherical objects can be
obtained conveniently with this coordinate system. Spatial zoning can be
variable in the radial direction but must be azimuthally symmetric. Func-

tions to specify radial zoning to the code are employed internally. Con-

stant or variable zoning may be requested. In the latter case, sizes can
vary only mildly (typically a factor of 2 increase from the inner sphere to
the outer sphere) or rapidly (typically a factor of 15 increase from inner
to outer sphere). Strong variations are generally employed for high space-
charge-limited (SCL) conditions where resolution of large field and current
gradients is required.

Forces acting on the particles representing photo-electrons are limited
to electric fields only.

Two time steps are employed in dynamic cascs. The Maxwell's equation
time step, or "light time step," is determined automatically by the code.
It satisfies the Courant stability criterion and is also an integer divisor
of the particle or "electron time step."” Thus, the field equations may be
called several times for each particle position update. A minor code modi-

fication is necessary to specify any particular light-time step.

3. E. P. Wenaas and A. J. Woods, "Comparisons of Quasi-Static and
Fully Dynamic Solutions for Electromagnetic Field Calculations in a
Cylindrical Cavity," IEEE Trans. Nucl. Sci. NS-21, No. 6, December 1974.




A convenient summary of the DYNASPHERE calculational sequence is
found in the flow chart in Figure 1. Notice that electron-emission
information is obtained from a separate source. Also, notice the optional

electron-trajectory "movie" capability. These movies can be obtained by
specifying an input option and saving the resulting particle information

on tape for later treatment by the MOVIE code (Ref. 4).

4. A. J. Woods, T. N. Delmer, and M. A. Chipman, "The Arbitrary Body
of Revolution Code (ABORC) for SGEMP/IEMP,'" INTEL-RT 8141-028, April 1976.
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3. DYNASPHERE COMPUTER REQUIREMENTS

DYNASPHERE is a FORTRAN-IV computer program of about 4000 cards,

including both the dynamic and quasi-static segments of the code. No

machine language coding is employed. The code operates on the CDC 7600

computer. Core requirements are 4200010 words of small core and 1oo,oool0

words of large core. Three fast-access files are also required during
execution, and four are optional, depending on code input options chosen.
The RUN compiler is currently used, although conversion to the faster
FTIN compiler should be straightforward at this time. Run times vary from

1 to 30 minutes of central processor time, depending on problem condi-

tions. Core must be preset to zero.




4. DESCRIPTION OF THE INPUTS

Detailed descriptions of input quantitics required by DYNASPHERE are
listed in this section. Variable names and their physical or calcula-
tional significance are given, along with for ats for reading them into
the code.

A brief list of definitions peculiar to DYNASPHERE is given in Table
1. This information expedites communication of detailed code quantities.
Variable limits are found in Table 2; these help the user to stay within
the numerical and physical limitations of the code. The positions on
the grid where quantities are evaluated are given in Table 3.

In addition to the detailed input descriptions listed here, the user
will find a complete, abbreviated input description in the code listing
itself. The descriptions are at the beginning of the main program (called
MAIN). Once the programmer understands the basic functions of the inputs,
the abbreviated manual is probably the most convenient to use. Also, cer-
tain variables are not defined in the input descriptions in this report
because they pertain either to debugging the older quasi-static version
of the code or to optional editing features. The abbreviated manual con-
tains definitions of these quantities. These items can be ignored in
standard SGEMP calculations.

Input card descriptions appear at the end of this section. The card
numbers shown actually mean ''card type', 1If an array requires more numbers
than fit on one card, it is continued on the next card. An array, as
opposed to a single variable, is identified quickly from the format infor-
mation. A number appearing in front of the format type (A, E, or I) indi-
cates an array, while lack of a number indicates a single value.

Variables may have more than one name. All names are given for con-
venience. The words "EDIT" and "DEBUG" appearing at the beginning of
descriptions imply that the variable is used either for editing or for

debugging purposes. These titles help the user to scan the descriptions




more rapidly. The designations '"MAX and "MAX NO" give the maximum value
and the maximum number of values a variable can have, respectively. Min-
imum numbers of values are given by '"MIN NO'" where appropriate. Default

values, set by the code when no value is read in, are also noted where

applicable.

Table 1

DEFINITIONS OF TERMS COMMONLY USED IN THIS MANUAL
AND IN DYNASPHERE OUTPUT

Particles Large numbers of photo-electrons
grouped into a single charged
particle.

Mini-print Short printout (3 lines) giving
summary quantities helpful in ana-
lyzing the calculation. Can be
printed out at times independent
of the large 2-D prints.

2-D print Large printout giving spatial
distributions of fields and cur-
rents, as well as other pertinent
information. Can be printed out
less often than the small mini-
prints.

Dynamic calculation Indicates full Maxwell's equations
solution for fields, as opposed to
the quasi-static approximation.

Quasi-static calculation Indicates fields calculated from
Maxwell's equations with the time-
derivative terms removed. Green's
function technique is used.

10




Table 2

MINIMUM AND MAXIMUM VALUES OF DYNASPHERE VARIABLES

Min. No. Max. No.
Input Variables
50 radial } Henastic
20 angular <
apneriebex 8 20 radial } quasi-
20 angular) static
Time steps - -
Emission zones 1 50
Energy distributions 1 504
Energy bins 1 50
Time histories 1 1
Angular distributions 1 50
Angular distribution bins 50
2-D prints - -
Mini-prints - e
Calculational Variables
Total number of particles 0 2000
emitted in a given time step o
Number of particles being 0 20000

followed in a given time step

aOnly 1 angular and energy distribution per emission zone are permitted,

however.

11
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Table 3

RELATIVE POSITIONS ON GRID WHERE FIELDS, CURRENTS,
AND CHARGES ARE CALCULATED

Positions ¢ and b indicate
zone center and boundary,
respectively. These posi-
tions pertain to dynamic
calculations only.

Axial Radial
Quantity Position Position
E (s b
iy
(a)
E b 5
o C
(b)
H C C
¢
J C b
i
JO b C
Charge in zone b b
Surface current ¢ (s
(a) O is the polar angle relative to the photon propagation direction
(b) ¢ is the azimuthal angle relative to the photon propagation direction




INPUT CARDS

Card Columns Variable
Number (format) Name(s) Description
1 1-78 TITLE Comment card
(13A6)
2 1-2 10PT(1) Quasi-static calculations only: gives
(12) (METHOD) Green's function source charge type
1 Source charges are rings
2 Source charges smeared out over
spatial zone
2 3-4 10PT(2) EDIT: Limits printout
(12} (IRPINT) -1 Minimum printout (no particle
emission characteristics)
0 Particle emission character-
istics
1 Green's function print if
quasi-static
2 5-6 10PT(3) Determines emission particle initial
2 (12) (INPUTR) radial positions in meters
0 Emit particles from radial
position
r = 0.999*[RSAT - 1r,/2)], dynamic
r = 0.999*RSAT, quasi-static ,
>0 Emit particles from radial posi-
tion INPUTR (MAX < outer sphere
radius)
2 7-8 10PT(4) Do not execute problem of >0.

(12) (ITDIM) Allows for stopping after Green's
function calculation in quasi-static
cases. Code does not read any infor-
mation beyond the zoning cards (cards
5-8). Permits checkout of Green's
function on various analytic charge
densities. See 10PT(20).

2 9-10 [OPT(5) DEBUG: Error off, to get core dump

(I12) (IDUMP) at end of problem if >0.

2 11-12 I0PT(6) Quasi-static only:
(12) (IGRID) 0 Source and field point grids are

the same
1 Source and field point grids will
be different




Card Columns Variable
Number (format) Name (s) Description
2 13-14 IOPT(7) DEBUG: Permits Green's function
(12) (1QSAT) checkout with no contribution from
net charge on inner sphere
2 15-16 I0PT(8) DEBUG: Quasi-static only.
(T2} A number of test problems to run
checking out Green's function.
If >1, code reads in IOPT(8)-1 new
values for the variables I10PT(7,12,
13,14,20) in sequence after zoning
cards (cards 5-8). Permits redefi-
nition of various analytical charge
densities. See IOPT(20) and also
abbreviated user's manual in MAIN
program.
2 43-44 I0OPT(22) Emit particles every NESKIP+1 time
(I2) (NESKIP) steps. Default = 0.
2 47-48 I0PT(24) Print out 2-D prints every IOPT(24)
¢12) (NTSKIP) particle time steps. Overridden by
DTPRNT (card 16).
2 40-50 I0PT(24) 0 Define emission particle angu-
(12) (IEMIT) lar bins relative to axis of
coordinate system.
1 Define emission particle angu-
lar bins relative to surface
normal .
P 51-52 I0OPT(26) Number of electron emission zones.
(12) (1I0P26) If zero, emission zones same as
(NEPTS) angular zones defined by card 6,
and cards 11 and 12 need not be
read in. MAX = 50.
2 53-54 LOPT(27) Number of emission electron angular
(2 (NTH) lar bins. MAX = 50.
9 55-56 IOPT(28) Number of emission electron energy
(12) (NSPD) bins. MAX = 50.
2 57-58 IOPT(29) 0 Quasi-static approximation.
(@59, 1 Full Maxwell's equation treat-

ment.

-1 Quasi-static approximation with
constant zone size in both radial
and angular directions. Do not
read in cards 5-8.




Card Columns Variable
Number (format) Name (s) Description
2 59-60 I0PT(30) EDIT: Printout limiter in dynamic
(12) (IPRNT) cases only.

0 Short print - does not print
out surface current and charge
density on outer sphere, nor
photo-electron charge density
in 2-D prints

1 Long print - prints out surface
currents and charge densities on
outer sphere as well as photo-
electron charge density in 2-D
print. Also prints out several
other arrays such as charge in
each zone as well as current
densities calculated in a man-
ner different from the Maxwell's
equation section.

2 61-62 I0PT(31) Print mini-prints every I10OPT(31)
(12) particle time steps. DEFAULT = 1.
2 63-64 IOPT(32) MOVIE option: Write particle posi-
(12) tion information to file TAPE20
every 10PT(32) particle time steps
if >0. If <0, plot particle posi-
tions on printer as well as writing
file.
3 1-2 KOPT (1) Number of radial zones
(12) (NR) MIN = 3
MAX = 50
3 3-4 KOPT(2) Number of angular zones
(12) (NT) MIN = 3
MAX = 20
3 5-6 KOPT(3) Use in quasi-static cases only
(13) (NC) 0 Radial source point zoning in
Green's function same as field
point zoning
>0 Number of radial zones for
sources for fields in Green's
function. See IGRID [IOPT(6)].
MAX = 20
3 7-8 KOPT(4) Like KOPT(3) but for angular zones.
(12) (NA) MAX = 20




Card Columns
Number (format)

Variable
Name(s)

Description

3 9-10
(12)

3 11-12
(12)

3 13-14
(12)

3 15-16
(12)

3 17-18
(12)

3 19-20
(12)

KOPT(5)

KOPT (6)

KOPT(7)

KOPT(8)

KOPT(9)

KOPT(10)

EDIT: 2-D print size limiter.

0 Print out approximately 10 radial
zones in 2-D prints in addition
to special zones specified by
KOPT(7 and 8)

>0 Print out every KOPT(5) radial
zones where indices are between
the values specified by KOPT(7
and 8). DEFAULT = 1.

EDIT: Print out every KOPT(6) angu-
lar zones.
DEFAULT = printout £ 10 angles.

Print every radial zone up to and
including zone number KOPT(7)
regardless of KOPT(5).

DEFAULT = 1.

EDIT: Print out every radial :zone
with index 2 KOPT(8) regardless of
KOPT(5) .

DEFAULT = number of radial zones

Radial zoning flag - dynamic calcu-
lations only.

0 Constant zone size.

1 DEBUG: Sets constant zone size
but uses FUNQR subroutine. Per-
mits checkout of that routine
when compared with same calcula-
tion with KOPT(9) = 0.

Zone size increases slowly to
about twice as much at outer
sphere as at inner sphere.

Zone size increases rapidly to
about 10 times as large at outer
sphere as at inner sphere.

o

2}

Random emission flag:
0 Discrete emission.

>0 Randomize energy and angle of
emission particles between bin
centers defined by cards 9, 10,
13, 14. Requires at least 2
bins for energy spectra, 2 for
angular distributions. Different
values of KOPT(10) give different
random number sequences.

16
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Card Columns Variable
Number (format) Name (s) Description
3 21-22 KOPT(11) If >0, write current densities in
(I2) radial and angular directions to
file TAPE21 every particle time
step. Permits use by lumped-element
modeling code, which generates time
histories of the currents.
3 23-24 KOPT(12) Check for more than 1 input deck if
(12) >0.
4 1-12 RSAT Radius of inner sphere (m)
(E12)
4 13-24 B Radius of outer sphere. For quasi-
(E12) static calculations with single
r sphere only, set RSAT >10“ (m)
S 1-72 CI Radial zone boundaries. Read in for
(6E12) quasi-static cases only (m).
MAX NO = 20
6 1-72 ALPHA Angular zone boundaries. Read in for
(6E12) quasi-static cases only (radians).
MAX NO = 20.
7 1-72 RI Radial zone boundaries for source :
(6E12) charges in Green's function. Read '
in in quasi-static cases only (m).
MAX NO = 20.
8 1-72 THETA Angular zone boundaries for source
(6E12) charges in Green's function. Read
in in quasi-static cases only
(radians).
MAX NO = 20.
9 1-72 ENRG Initial energies of emission elec-
(6E12) trons. Read in 10PT(28) values : I
(keV).
MAX NO = 50.
10 1-72 THETAO THETA-"ZERO": Initial directions of
emission electrons at cach emission
point. Measured from surface nor-
mal or z axis, depending on IOPT(25). L
MAX NO = 50.
17
17




Card
Number

Columns
(format)

Variable
Name (s)

Description

11

12

13

14

15

16

1-72
(6E12)

1-72
(6E12)

1-72
(6E12)

1-72
(6E12)

1-72
(6E12)

1-12
(E12)

THP

DTH

FNORMS

ELN

FTH

TMAX

Angular positions of emission points

measured from axis of the coordinate

system. Read in IOPT(26) values only
if IOPT(26) »0 (radians).

MAX NO = 50.

Width of the emitting sectors in units
of cosine(min) - cosine(max) where
min and max can be thought of as

the minimum and maximum angular
positions of the emission zone edges.
Not a convenient input. See IOPT(26)
for easier-to-use method. Read in
IOPT(26) values if IOPT(26) >0.
(dimensionless)

MAX NO = 50.

Normalizing factor for emission cur-
rent density from each emission zone.
Multiplies JPEAK. Negative value
means use the energy and angular dis-
tributions from the previous emission
zone (1 zone closer to the axis).

Read in I0PT(26) values (dimensionless)

Relative number intensity of elec-
trons in each energy group. Read in
as many cards 14 and 15 in pairs as
there are positive values of FNORMS
(card 13). Code normalizes spectra
to JPEAK peak emission current den-
sity. Beware of these units.
(electrons/energy bin)

MAX NO = 50.

Relative number intensity of emission
electrons in each emission angular
distribution bin. See also card 14.
All distributions normalized by code
to peak emission current density of
JPEAK. Beware of these units.
(electrons/angular bin)

MAX NO = 50

Maximum time of calculation (nsec)




Card Columns Variable
Number (format) Name (s) Description
16 13-24 DELT Particle time step (nsec)
(E12)
16 25-36 Tl Rise time of the trapezoidal emission
(E12) current pulse (nsec)
16 37-48 T2 Emission current pulse is constant
(E12) from T1 to T2 (nsec)
16 49-60 T3 Emission current pulse falls off
(E12) linearly to zero from T2 to T3 (nsec)
16 61-72 DTPRNT Print 2-D prints every DTPRNT nsec
(E12)
17 1-12 NTOT Total number of electrons emitted in
(E12) the emission current pulse. If zero,
calculated from JPEAK (card 17).
(electrons)
17 13-24 JPEAK Peak emission current density. If
(E12) zero, calculated from NTOT (card 17).
Either NTOT or JPEAK must be non-
zero. (amp/mz)
17 25-36 TSTART Quasi-static calculations only:
(E12) Restart from dump tape at time
Y TSTART. See IOPT(17). (nsec)
17 37-48 DTTAPE Quasi-static calculations only:
(E12) Write dump tape every DTTAPE nsec.

See 10PT(18).

19




5. DYNASHPERE SAMPLE PROBLEM

A sample calculation is described in this section. The physical prob-
lem is described, and the required input cards are given. Selected code
outputs are listed. Descriptions of these outputs are found in the variable
glossary of Section 6.

This sample problem is sufficient to illustrate many code features and
to provide a test of DYNASPHERE when it is converted to a different computer
system.

The sample problem consists of a sphere of 2.3 m radius enclosed in an
outer sphere of 15.2 m radius. Mono-energetic electrons of energy 7.1 keV
are emitted uniformly from one-half the inner sphere surface. The pulse
shape is trapezoidal, with 45 nsec rise and fall times and 55 nsec full-
width-at-half-maximum. The peak emission current density is 0.108 amp/mz,
and the electrons are assumed to be emitted radially outward.

The problem conditions result in a non-space-charge-limited solution.
Gradients will not be steep, and the slowly varying radial zone size is
sufficient to give reasonably accurate resolution of gradients near the
inner sphere. KOPT(9) is set to 2, and 30 radial zones are used, result-
ing in a minimum radial zone size of 0.24 m (chosen by the code). A time
step of 2.5 nsec causes particles to traverse about one-half this distance
each step. Ten angular zones and five emission zones are employed, with
the latter being set by the code. The problem is run to 150 nsec, with
large spatial printouts every 20 nsec. Particles are emitted every other
time step.

The particular model chosen for this sample problem should not be
regarded as a typical SGEMP problem. Simplifying assumptions, such as
monoenergetic electron emission normal to the surface, may give unrealistic
results, and the practice of emitting particles every other time step can
be particularly dangerous in space-charge-limited situations. These simp-
lifying assumptions were adequate for the purposes of this sample problem,
however.

20




Input card images describing the sample problem to the code are
shown in Figure 2. The particle emission characteristics resulting from
the electron emission specifications are shown in Figure 3. These var-
iables give initial electron positions, energies, and angles. A sample
mini-print and a sample spatial print appear in Figures 4 and 5, for a
time of 20 nsec. Limited information on fields, currents, particle
positions, etc., is given in the mini-print, while detailed spatial
distributions are contained in the larger print, Note that only 12 of
the 30 radial zones are printed out in the spatial distribution of fields
and currents. All 30 zones could have been obtained by setting KOPT(5)
=

A slightly low value for the quantity QINJEK (total emitted charge)
will be seen in the mini-print. The number shown is about 25 percent
lower than the time integral of the emission current. This is a conse-
quence of choosing a large time step and emitting particles every other
step (a procedure that is not recommended). By the end of the pulse, the

emitted charge is much more consistent with the expected value.
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Figure 2. DYNASPHERE sample problem input deck
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6. VARIABLE GLOSSARY

A glossary of DYNASPHERE variables and output headings is contained
in this section. Definitions of input quantities are given in the input
description section of this report, so many of those quantities are not
found here. All output variables and headings essential to the usage of

the code for "production'" SGEMP calculations are defined in the glossary.

GLOSSARY OF DYNASPHERE VARIABLES AND OUTPUT HMEADINGS

ASPHER EMISSION AREA (M2)

CURRENTS IN 2eD PRINT, ACTUALLY SHOULD Bt CURRENT DENSITY (AMP/MZ)
E ELECTRIC FIELD (VOLT/M)

EMQ TOTAL CHARGE TO BE EMITTED FROM tACH EMISSION ZONE OVER

THE ENTIRE EMISSION CURRENT PULSE, THE SUM OF THESE

VALUES SHOULD BE ROUGHLY EQUAL TO THE INTEGRAL OF THE
EMISSION CURRENT DENSITY OVER TIME AND SPACE FOR TWE ENTIRE
PULSE, AT EACH EMISSION TIME STEP, A PARTICLE IS EMITTED
FROM EACH ZONE WITH AN AMOUNT OF CHARGE EQUAL TO

TE « EMG (1), WHERE TE 18 DEFINED BELOW,

ENERGY EMISSION ELECTRON INITIAL ENERGIES (KEV),
ER RADIAL ELECTRIC FIELD (VOLT/M), PLOTTED AT END OF RUN
FOR VALUE ON INNER SPWERE AT THETA®O VS, TIMg,
ER(0,90pEG) ER ON INNER SPHERE AT TWgETA30 AND 90 DEGREE POSITIONS
(OR CLOSEST YO THEM), (VOLT/M)
FGENE QGENE/QINJEKR, FRACTIQONAL AMOUNT OF EMISSION CHARGE
RETURNING TOWARD SPHERE AT EACKH RADIA(L 20ONE (DIMENSIQNLESS)
N MAGNETIC FIELD (aMp/M)
I1TIME PARTICLE TIME STEP NUMBER
JNET APPROXIMATE ExPRESSION FOR THE NET AVERAGE CURRENT DENSITY

LEAVING THE INNER SPHERE, EGQUALS NET CURRENT ONTO INNER
SPHERE DIVIDED BY EMISSION AREA, AVERAGED JNET DESIGNATES
JNET ALSO, EQUALS JNOW IN NUNeSCL CASES, (AMP/CMR2)

JNOW EMISSION CURRENT DENSITY AT THIS TIME AVERAGED OVER
EMISSION AREA, (AMP/CM2),

MAX, NO, OF MAXIMUM VALUE OF NPARY UP TO TWIS TIME,

PARTICLES UP TO

THIS TIMe

NA NUMBER (OF ANGULAR ZONES

NBACK CUMULATIVE NUMBER OF PARTICLES RETURNING TO INNER SPHERE

UP 10 TWIS TIMmt

28




NBANK

NLEAVE

NPARY

NR

NRET

PHI

POTENTIAL
0y

@2
L 03

QBaCK

QGENE

E GHERE

QIN

QINJEX

QGIN/GS

GLEAVE

QnNET

RMa X

GUASTeSTATIC, SINGLE SPWERE CALCULATIONS UNLYB TOTaL NUMBER
OF PARTICLES IN STURAGE BANK FOR THOSE PARTICLES QUTSIDE
REGION WHERE GREENTS FUNCTION FOR FIELDS 1S DEFINED,

A RADIAL FORCE DUE TO NET CHARGE ON SPHERE PULLS THESE
PARTICLES BACK TO THE REGION WHERE THEY CAN REENTER THE
SPATIAL MESH AND AGAIN WAVE OTw RADIAL AND aXJaL FIELDS
CALCULATED FROM ThE GREEN?S FUNCTION ACY ON THeM, TWOSE
PARTICLES W1TiW KINFYIC ENERGY GRELTER TwAN SPHERE POTENTIAL
ENERGY ESCAPE TO INFINITY,

CUMULATIVE NUMBER (F PARTICLES wWHICH WAVE LEFT SYSTEM UP TO
THIS TIME By STRIKING INNER OR OUTER BOUNDARY

NUMBER UF PARYVICLES KREING FOLLOWED AT THIS TIME, INCLUDES
THOSE IN THE BANK TN QUASI=STATIC CALCULATIONS,

NUMBER OF RADJAL Z0NES

QUAS1eSTATIC, SINGLE SPHERE CALCULATIONS ONLym CUMULATIVE
NUMBEKN OF PARTICLES RETURNING FROM STORAGE RatNx UP TO
THIS TIME (SEE NHANR)

DESIGNATES INNER SPRERE POTENTIAL WELATIVE YO QUTER
SPHE KE (vOLTS)

ELECTRIC POTENTIAL, (vVoLTS)
GENERALIZED COORDINATE CORNESPONDING TO WADIAL VARIAKLE,

GENERALIZED COURDINATE CORRESPONDING TO POLAR ANGULAR
VARIABLE,

GENERALIZED COURDINATE CNRRESPONDING TU aZyMUTHAL ANGULAR
VARI&HBLE ,

TOTAL PARTICLE CHARGE WHICH WAS STRUCK INNpR SPHERE UP
TO TW1S TIME (COUL), ALSU USED TO DESIGNATE THE GGENE
ARKAY, DEFINED BELOW,

ARRAY 11p NR VALUES GIVING aMOUNT OF CmaWGE IN taCw~ RaDIAL
ZONE wwICH 1S RETURNING TOWARD IANER SPwERE, (COUL)

CHARGE EMITTEp FRUM pACKH ANGULAR ZOINE ON INNER SPHERE MINUS
CHARGE WRETURNED T BACH ANGUL AR

ZONE ON SURFACE (OF INNER SPwbRE, WNETURN CWARGE IS FRUM
PARTICLES ONLY, NOT Dyt 10 SURFACE CuRRENT FLO8, (COUL)

NET CHARGE QUT TP & GIVEN RADIUS INCLUDING TRE NEY CHARGE ON
THE INNER SPRERE AND ALL THE APGULARK 20NES, NOT CALCULATED
PROPERLY AT PRESENT, (CouL),

YOTAL CHARGE EMITTED yP tO THIS TIME (COUL)

GIN/GNET, GIVES NET CWARGE OUT TO EACHM RaplaL POSTITION AS
FRACTION OF INNER SPHERE NET (WARGE, (DIMENSIONLESS)
NOT CALCULATED PRUPERLY AT PRESENT,

TOTAL CHARGE STRIKING SPHERICAL SUNFACES UP TN TWIS TIME
(COUL), INCLUDES CHARGE ESCAPING PaAST RMAX IN SINGLE
SPHERE, GUASTeSTATIC CASES,

NET CHARGE ON INNER SPHERE, RUALS GINJEK o @RaCx, (COuL),
ALSC USED aS TITLE OF QWERE aRRAY,

RADIAL ZNNE ROUNDARIES OR CENTERS, DEPENDING ON WHICW FIELD,
CURRENT, OR CHARGE GUANTITY 1S BEING PRINTED QUT,

SEE TaMLE ALSD USED IN THE MINTePRINT TO
DESTGNATE RaDIAL PUSTTIONS OF THE FIRST aND LAST & PARTICLES
PRESENTLY BEING FOLLNOWED, ALSO USED IN EMISSION PARTICLE
CHARBACTERISTICS PRINT NUT YO INDICATE INITIAL RADIAL
PCSITIONS (F Tweg PARTICLES,

OUTER RADIAL BOUNDARY 0'F TwE CALCULATION, CaAN BE A
RADIAL PUSITION IN FREE SPACE IN QUASI®STATIC CASES, (M)




Scur

SPEED

SURFACE CHARGE
DENSITY

SURFACE CURRENT

SURFCUR(4S,
90,135 DEG)

TE

THETA

"L

VTIHETA

SURFACE CURRENTS FLUWING ON INNER SPHERE AT gaCH aANGULAR
POSITION, OBTAINED FROM MAGNETIC FIELD JUST OUTSIDE
SPHERE wWICHW IS EVALUATED AT ZONg CENTERS IN EACH
COORDINATE, (AMPS)

EvISSION ELECTRON INITIAL SPEEDS (kEV),

SURFACE CHARGF ON INMNER AMND UyTER SPHMERES IN EACH ZONE ON
THE SURFACES, INNER gPHERE alwdyg PRINTED, NUTER SPHERE
DEPENDS ON JOPT(30), Twe PRODUCTION PRINT FLAG, OBTAINED
FROM Twg NORMAL ELECTRIC FIELD NEAR TWe SURFACES, THE SU™
OF Tree VALUES ON THE INNER SPHERE SHOULD AGREE RODUGHLY WITH
GNET, THE NET CHARGE ON TWE [NNER SPHERE ORTAINED FROM

THE PARTICLE MOTION, THE ()| VALUE APPEARS T0O HE IN ERRUR
FOR Tr]S PARTICULAN PRINTQUT QUANTITY, (COUL),

CURKENT DENSITIES FLOWING ON INNER AND OUTER SPWERES,

INNER SPHERE ALWAYS PRINTE(D, OUTER SPHERE DEPENDS NN
10PT(30), Tk PRODUCTION PRINT FLAG, THESE CURKENT

DENSITIES aRE NBTAINED FROM THE MAGNETIC FIELD FIRST

NON®Z2E RO VALUE NEAR THE SPHEKICAL SURFACES, THE VaLUE

OF Q1 APPEARS TO BE IN ERWNUR FOR TWIS PARTICULAR PRINTOUT
QUANT]TY, (AMP/M)  PLOTTED wITw UNITS OF aAMPS AT END OF RUN,

SURFACE CURKRENTS OUN INNER SPHERWE CLOSEST TN Twe 45, 90, AND
135 DEGREE POSITIUNS, RESPECTIVELY, SEE SCUR, (AmMPS)

THE EXACT ANGULAR POSITIONS CLOSEST 10 TwE 4S, 90 ANH 135
DEGREE LOCATIONS ARt PRINTED OUT IN THe SURFACE CURRENT
TIME MISTORY PRINTOUT NEAR THE LAST PAGE UF TWE PRINTOUT,
TIME (NSEC)

FRACTION OF TWE TQTAL EmMISSIUN CURKENT PULSE AKEA (CCUPIER
HY THE CURRENT PULSE WEIGHMT TIMES THE PARYICLE TIME STEP,
(OIMENSIONCESS)

POLAR ANGLE (RADIANS)
RADIAL vELOCITY (M/SEC)

POLAR VELOCITY (M/SEC)
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